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Abstract
Using bicomplex formalism we construct generalizations of Fordy–Kulish
systems of matrix nonlinear Schrödinger equations on two-dimensional space-
time in two respects. Firstly, we obtain corresponding equations in three space-
time dimensions. Secondly, a Moyal deformation is applied to the space-time
coordinates and the ordinary product of functions replaced by the Moyal product
in a suitable way. Both generalizations preserve the existence of an infinite set
of conservation laws.

PACS numbers: 0230I, 0545Y, 0240G, 0230J

1. Introduction

A bicomplex is an N0-graded linear space (over R or C) M = ⊕
s�0M

s together with two
linear maps d, δ : Ms → Ms+1 satisfying

d2 = 0 δ2 = 0 d δ + δ d = 0. (1.1)

Associated with a bicomplex is the linear equation

δχ = λ d χ (1.2)

where χ ∈ M0 and λ is a parameter [1]. If it admits a (non-trivial) solution as a (formal) power
series χ = ∑

r�0 λ
rχ(r) in λ, the linear equation leads to

δχ(0) = 0 δχ(r) = dχ(r−1) r = 1, . . . ,∞. (1.3)

As a consequence, J (r+1) = dχ(r), r = 0, . . . ,∞, are δ-exact. These elements ofM1 may be
regarded as generalized conserved currents [1].

In section 2 we start with a trivial bicomplex. A certain ‘dressing’ (in the sense of [1])
then leads to a bicomplex formulation of the Fordy–Kulish systems [2] of matrix nonlinear
Schrödinger (matrix-NLS) equations3. More precisely, our approach leads to an extension of

3 See also [3]. For some other generalizations of the NLS equation see [4], in particular.
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the latter systems from two to three space-time coordinates t, x, y from which the matrix-NLS
equations are obtained via the reduction y = x.4 Our (2 + 1)-dimensional systems turn out to
be matrix generalizations of a system studied in [7, 8] (see also the references given there).

Furthermore, in section 3 deformation quantization [9] is applied to the space-time
coordinates. The ordinary commutative product in the algebra A of smooth functions on
R

3 is replaced with the ∗-product, which is defined by

f ∗ h = m ◦ ei P/2(f ⊗ h) (1.4)

where m(f ⊗ h) = f h for all f, h ∈ A, and P : A ⊗ A → A ⊗ A is given by

P = ϑ1 (∂t ⊗ ∂x − ∂x ⊗ ∂t ) + ϑ2 (∂t ⊗ ∂y − ∂y ⊗ ∂t ) + ϑ3 (∂x ⊗ ∂y − ∂y ⊗ ∂x) (1.5)

with real deformation parameters5 ϑj , j = 1, 2, 3. Under complex conjugation, we have
f ∗ h = h ∗ f for functions f, h. The partial derivatives ∂t , ∂x, ∂y are derivations of the ∗-
product. Space-time deformation quantization has been applied recently to various integrable
models in [10–12], for example.

Section 4 deals with the conservation laws of the extended and deformed Fordy–Kulish
systems. Section 5 gives corresponding generalized ferromagnet equations for the latter
systems. Section 6 contains some conclusions.

2. Bicomplex formulation of extended Fordy–Kulish systems

We choose the bicomplex space asM = M0 ⊗�whereM0 = C∞(R3,CN) denotes the set of
smooth maps φ : R

3 → C
N and� = C⊕�1 ⊕�2 is the exterior algebra of a two-dimensional

complex vector space with basis τ, ξ of �1 (so that τ 2 = ξ 2 = τ ξ + ξ τ = 0). M becomes a
bicomplex with the maps d and δ defined by

dφ = φt τ + φx ξ (2.1)

δφ = φy τ + (A− a I) φ ξ (2.2)

where an index denotes a partial derivative with respect to one of the coordinates t, x, y on
R

3, for example φt = ∂tφ. A is a constant N × N matrix, I the identity matrix, and a ∈ C.6

By linearity and d(φ τ + ϕ ξ) = (dφ) τ + (dϕ) ξ (and correspondingly for δ) the maps d and δ
extend to the whole ofM . Now we apply a ‘dressing’ to d as follows:

Dφ = dφ + δ(Lφ)− Lδφ
= (φt + Lyφ) τ + (φx + [A,L]φ) ξ (2.3)

with an N × N matrix L and [A,L] = AL − LA. Besides δ2 = 0, also δD + Dδ = 0 is
identically satisfied. The only nontrivial new bicomplex equation is D2 = 0, which takes the
form

Lyx − [A,Lt ] − [Ly, [A,L]] = 0. (2.4)

Let us assume thatA and L take values in a representation of the Lie algebra g of a simple
Lie groupG. LetK be a subgroup ofGwith Lie algebra k, and m the vector space complement

4 A different extension of the Fordy–Kulish systems to 2 + 1 dimensions obtained by replacing the spectral parameter
in the (1 + 1)-dimensional systems by a new partial derivative appeared in [5]. See also [6] for some related work.
5 Only one of these parameters is actually independent since P is antisymmetric and thus degenerate in three
dimensions.
6 More precisely, d2 vanishes identically, δ2 = 0 requires (A − a I)y = 0, and d δ + δ d = 0 is satisfied iff
(A−a I)t = 0. This still allows an x-dependence ofA−a I . In the following, we will be interested in the possibility
of a reduction of the system to two space-time dimensions by setting y = x. Then A− a I has to be constant.
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of k in g, so that g = k ⊕ m and [k, k] ⊂ k. We assume that the homogeneous space G/K is
reductive and moreover symmetric, i.e.

[k,m] ⊂ m [m,m] ⊂ k. (2.5)

For a Hermitian symmetric space with a complex structure J : m → m, J 2 = −1, the
following conditions hold (cf [2]). There is an element A ∈ g such that k = ker adA. For a
particular scaling of A, we have J = adA and there is a subset θ+ of the positive root system
such that m = span{e±α|α ∈ θ+} and [A, e±α] = ±i e±α for α ∈ θ+. Here eα belongs to the
Cartan–Weyl basis. Moreover, [eα, eβ] = 0 = [e−α, e−β] for all α, β ∈ θ+.

Now we choose A in (2.2) with the above properties. A is then k-valued. With the
decomposition

L = Q + P (2.6)

whereQ ∈ m and P ∈ k, the k- and m-part of (2.4) reads, respectively,

Pxy = [Qy, [A,Q]] (2.7)

Qxy = [A,Q]t + [Py, [A,Q]]. (2.8)

According to the above assumptions,Q has a decomposition

Q = Q+ +Q− [A,Q±] = ±iQ±. (2.9)

Now one finds that (2.7) can be integrated with respect to y. This yields

Px = −i [Q+,Q−] (2.10)

(up to addition of a k-valued matrix, which only depends on t and x and which we disregard
in the following). Equation (2.8) now leads to

iQ±
t ∓Q±

xy + i [Py,Q
±] = 0. (2.11)

The system of equations (2.10), (2.11) constitutes an extension of the Fordy–Kulish systems [2]
to which it reduces when y = x. In the latter case, (2.10) determines Px , which can then be
eliminated from (2.11). We are then left with the following equations:

iQ±
t ∓Q±

xx + [[Q+,Q−],Q±] = 0. (2.12)

Example. Let G = SU(2) and y = x. The subalgebra of su(2) spanned by A = (i/2) σ3

with the Pauli matrix σ3 is clearly annihilated by adA and generates a U(1) subgroup. Let

Q+ =
(

0 ψ

0 0

)
Q− =

(
0 0

−ψ 0

)
(2.13)

whereψ is a complex function with complex conjugateψ . Then the two equations (2.12) both
reduce to the nonlinear Schrödinger equation

iψt = −ψxx − 2 |ψ |2ψ. (2.14)

This example is easily generalized [2]. Let us consider the Hermitian symmetric space
SU(N)/S(U(n)× U(N − n)) and choose

A =
(
c1 In 0

0 c2 IN−n

)
(2.15)

where In is the n× n unit matrix and c1, c2 ∈ C. With

Q+ =
(

0 q

0 0

)
Q− =

(
0 0

−q† 0

)
(2.16)
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where q is an n× (N − n) matrix with Hermitian conjugate q†, we obtain

[A,Q±] = ±(c1 − c2)Q
±. (2.17)

The constants c1, c2 are thus related by c1 − c2 = i. Since A must be traceless, we also have
nc1 + (N − n)c2 = 0. Hence

c1 = N − n
N

i c2 = − n
N

i. (2.18)

The matrix P must have the form

P =
(
p 0
0 r

)
(2.19)

with an n×nmatrix p and an (N−n)×(N−n)matrix r . From (2.10) we obtain the equations

px = i q q† rx = −i q† q (2.20)

which are compatible with the unitarity constraints p† = −p and r† = −r , and with
tr(p) + tr(r) = 0. (2.11) becomes

i qt − qxy + i (py q − q ry) = 0 (2.21)

and its Hermitian conjugate. The reduction y = x leads to the matrix nonlinear Schrödinger
equation [2]

i qt − qxx − 2 q q† q = 0. (2.22)

The more general systems determined by (2.20) and (2.21) on three-dimensional space-time
will be called ‘extended matrix-NLS equations’ in the following.

Other examples of Hermitian symmetric spaces lead to further matrix nonlinear
Schrödinger equations [2] and extensions in the above sense.

3. Space-time deformation quantization of the extended matrix-NLS equations

In this section we apply a deformation quantization to the algebra of (smooth) functions on
space-time. The bicomplex (M,D, δ) introduced in the previous section then generalizes to
the deformed noncommutative algebra with the following definition:

Dφ = dφ + δ(L ∗ φ)− L ∗ δφ
= (φt + Ly ∗ φ) τ + (φx + [A,L]∗ ∗ φ) ξ (3.1)

with [A,L]∗ = A ∗L−L ∗A. The only nontrivial bicomplex equation is still D2 = 0, which
now takes the form

Lyx − [A,Lt ]∗ − [Ly, [A,L]∗]∗ = 0. (3.2)

Of course, the ∗-commutator does not preserve a Lie algebra structure, in general. As a
consequence, a decomposition of the last equation like that worked out for Hermitian symmetric
spaces in [2] and the previous section does not work, in general. However, in the case of
extended matrix-NLS equations only a certain block structure of the matrices entering the
bicomplex maps is important. Let m± be the set of all N × N matrices of the form of Q±

in (2.16). Let k be the set of all block diagonal matrices (such as P in (2.19)). Then we have
k ∗ k ⊂ k, k ∗ m± ⊂ m± and m± ∗ k ⊂ m±. Moreover, since A given in (2.15) with (2.18) is
constant, we still have [A,P ]∗ = 0 and [A,Q±]∗ = ±iQ±. Hence, we can proceed with the
decomposition L = Q+ +Q− + P as in the previous section. The above deformed bicomplex
equation now results in the following system:

px = i q ∗ q† rx = −i q† ∗ q (3.3)
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and

i qt − qxy + i (py ∗ q − q ∗ ry) = 0. (3.4)

This is a noncommutative version of the corresponding extended matrix-NLS system. The
equations (3.3) are consistent with unitarity constraints onp and r , but not with tr(p)+tr(r) = 0.
In contrast to the classical case, these matrices can no longer be taken as Lie algebra valued.
They have values in the corresponding enveloping algebra instead.

The reduction y = x of the above system leads to the noncommutative matrix nonlinear
Schrödinger equation

i qt − qxx − 2 q ∗ q† ∗ q = 0 (3.5)

which is the matrix version of the noncommutative nonlinear Schrödinger equation treated
in [11].

4. Conservation laws for the three-dimensional extensions and deformations of
matrix-NLS equations

The linear equation associated with the bicomplex underlying the deformed extended matrix-
NLS equations of the previous section is

δχ = λDχ (4.1)

with a parameter λ. χ is taken to be an N × n matrix of functions. The linear equation is
equivalent to the two equations

χy = λ (χt + Ly ∗ χ) (4.2)

(A− a) χ = λ (χx + [A,L]∗ ∗ χ). (4.3)

Let us decompose χ into an n× n matrix α and an (N − n)× n matrix β,

χ =
(
α

β

)
. (4.4)

In order to have a nontrivial solution of δχ(0) = 0, we choose a as an eigenvalue of A. To be
more concrete,

a = N − n
N

i A− a I = −i

(
0 0
0 IN−n

)
χ(0) =

(
In
0

)
. (4.5)

From (4.3) we obtain

αx + i q ∗ β = 0 β = i λ (βx + i q† ∗ α). (4.6)

Assuming that q has a left ∗-inverse, this implies

β = i q−1
∗ ∗ αx (4.7)

αx = i λ (αxx − qx ∗ q−1
∗ ∗ αx + q ∗ q† ∗ α). (4.8)

Furthermore, (4.2) leads to

αy = λ (αt + py ∗ α + i qy ∗ q−1 ∗ αx). (4.9)

α has a right ∗-inverse at least as a formal power series in λ, since at zeroth order it is equal to
In. Hence there are n× n matrices ρ, σ and ζ such that

αx = i λ ρ ∗ α αt = i λ σ ∗ α αy = i λ ζ ∗ α. (4.10)
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Then (4.8) and (4.9) lead, respectively, to

ρ = q ∗ q† + i λ (ρx − qx ∗ q−1
∗ ∗ ρ)− λ2 ρ ∗ ρ (4.11)

λ σ − ζ = ipy − i λ qy ∗ q−1
∗ ∗ ρ. (4.12)

The integrability conditions αxt = αtx and αxy = αyx together with (4.10) yield

ρt − σx + i λ [ρ, σ ]∗ = 0 (4.13)

ζx − ρy − i λ [ρ, ζ ]∗ = 0. (4.14)

Differentiation of (4.12) with respect to x, using (4.14), ipx = −q ∗ q† (cf (3.3)) and (4.11),
leads to

σx = (i (ρx − qx ∗ q−1
∗ ∗ ρ)− λ ρ ∗ ρ)y − i (qy ∗ q−1

∗ ∗ ρ)x + i [ρ, ζ ]∗. (4.15)

Inserted in (4.13), this yields

ρt + i (qy ∗ q−1
∗ ∗ ρ)x − (i (ρx − qx ∗ q−1

∗ ∗ ρ)− λ ρ ∗ ρ)y + i [ρ, λ σ − ζ ]∗ = 0. (4.16)

In terms of the product

f � h = m ◦ sin(P/2)
P/2 (f ⊗ h) (4.17)

with P defined in (1.5), the ∗-commutator of two functions can be written as follows:

1

i
[f, h]∗ = 2 m ◦ sin(P/2) (f ⊗ h)

= (f � (ϑ1 hx + ϑ2 hy))t + (f � (−ϑ1 ht + ϑ3 hy))x − (f � (ϑ2 ht + ϑ3 hx))y.

(4.18)

Taking the trace of (4.16), using the last formula and (4.12), we obtain the conservation law

0 = tr(ρ − i ρ � [(ϑ1 ∂x + ϑ2 ∂y)(py − λ qy ∗ q−1
∗ ∗ ρ)])t

+ tr(i qy ∗ q−1
∗ ∗ ρ + i ρ � [(ϑ1 ∂t − ϑ3 ∂y)(py − λ qy ∗ q−1

∗ ∗ ρ)])x
+ tr(λ ρ ∗ ρ − i (ρx − qx ∗ q−1

∗ ∗ ρ)
+i ρ � [(ϑ2 ∂t + ϑ3 ∂x)(py − λ qy ∗ q−1

∗ ∗ ρ)])y. (4.19)

Expanding ρ in a formal power series in λ, i.e.

ρ =
∞∑
r=0

λr ρ(r) (4.20)

(4.11) leads to

ρ(0) = q ∗ q† ρ(1) = i q ∗ q†
x ρ(2) = −q ∗ q† ∗ q ∗ q† − q ∗ q†

xx (4.21)

and

ρ(r) = i (ρ(r−1)
x − qx ∗ q−1

∗ ∗ ρ(r−1))−
r−2∑
s=0

(
r − 2

s

)
ρ(s) ∗ ρ(r−2−s) (4.22)

for r � 2. Inserting this in the expression

w =
∞∑
r=0

λr w(r) = tr(ρ − i ρ � [(ϑ1 ∂x + ϑ2 ∂y)(py − λ qy ∗ q−1
∗ ∗ ρ)]) (4.23)
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which appears in the above conservation law, an infinite set of conserved densities is obtained,
starting with7

w(0) = tr(q ∗ q† − i (q ∗ q†) � [(ϑ1 ∂x + ϑ2 ∂y) py]) (4.24)

w(1) = tr(i q ∗ q†
x + (q ∗ q†

x ) � [(ϑ1 ∂x + ϑ2 ∂y) py]

+i (q ∗ q†) � [(ϑ1 ∂x + ϑ2 ∂y)(qy ∗ q†)]) (4.25)

w(2) = tr(−q ∗ q† ∗ q ∗ q† − q ∗ q†
xx + i (q ∗ q† ∗ q ∗ q† + q ∗ q†

xx) � [(ϑ1 ∂x + ϑ2 ∂y) py]

−(q ∗ q†
x ) � [(ϑ1 ∂x + ϑ2 ∂y)(qy ∗ q†)] − (q ∗ q†) � [(ϑ1 ∂x + ϑ2 ∂y)(qy ∗ q†

x )])

(4.26)

which in turn can be expanded in (formal) power series in the deformation parameters. For
vanishing deformation parameters, the conserved densities w(r) are polynomials in q, q† and
their x-derivatives, but no y-derivatives. This means that the conserved densities of an extended
matrix-NLS system are the same (as polynomials in the fields and their partial derivatives) as
those of the corresponding matrix-NLS system (which is obtained from the former by setting
y = x). This is no longer so after deformation.

5. Generalized ferromagnet equations associated with deformed extended
Fordy–Kulish systems

A gauge transformation of the (deformed) bicomplex considered in section 3 is a map
g : R

3 → G such that

Dφ �→ D′φ′ = g−1
∗ D(g ∗ φ) δφ �→ δ′φ′ = g−1

∗ δ(g ∗ φ) (5.1)

for all φ ∈ M with φ′ = g ∗ φ. Such a map leaves the bicomplex equations invariant. Let us
choose g such that D′ = d. Then

g−1
∗ ∗ gt = −g−1

∗ ∗ Ly ∗ g g−1
∗ ∗ gx = −g−1

∗ ∗ [A,L]∗ ∗ g (5.2)

and, writing D instead of δ′, we obtain

Dφ = (φy + R ∗ φ) τ + (S − a I) ∗ φ ξ (5.3)

where we have introduced the abbreviations

R = g−1
∗ ∗ gy S = g−1

∗ ∗ A ∗ g. (5.4)

Now D2 = 0 reads

Sy = [S,R]∗ (5.5)

and dD + Dd = 0 becomes

St = Rx. (5.6)

Decomposing R as follows,

R = U +W (5.7)

where g ∗ U ∗ g−1
∗ ∈ m and g ∗ W ∗ g−1

∗ ∈ k, we find [S,R]∗ = [S,U ]∗ and thus
[S, Sy]∗ = [S, [S,U ]∗]∗. Using (adA)2 = −I , which implies (adS)2 = −I , we obtain
[S, Sy]∗ = −U , so (5.6) can be written as follows:

St = −([S, Sy]∗ −W)x. (5.8)

7 These expressions do not involve the ∗-inverse of q and also apply to solutions for which q is not ∗-invertible.
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Furthermore, (5.7) becomes

g−1
∗ ∗ gy = −[S, Sy]∗ +W. (5.9)

Equation (5.4) leads to Sx = [S, g−1
∗ ∗ gx]∗ (since A is constant), which implies

g−1
∗ ∗ gx = −[S, Sx]∗ (5.10)

by use of (adS)2 = −I . Together with the identity

(g−1
∗ ∗ gx)y − (g−1

∗ ∗ gy)x = [g−1
∗ ∗ gx, g−1

∗ ∗ gy]∗ (5.11)

the last two equations lead to

Wx = [[S, Sx]∗,W ]∗ + 2 [Sx, Sy]∗ − [[S, Sx]∗, [S, Sy]∗]∗. (5.12)

The second term on the rhs can be rewritten as follows:

[[S, Sx]∗, [S, Sy]∗]∗ = −[S, [[S, Sx]∗]∗, Sy]∗ + [S, [[S, Sx]∗, Sy]∗]∗
= [Sx, Sy]∗ + [S, [[S, Sx]∗, Sy]∗]∗ (5.13)

using again (adS)2 = −I . (5.2) implies g−1
∗ ∗gx ∈ g−1

∗ ∗m∗g and thus [S, Sx]∗ ∈ g−1
∗ ∗m∗g.

It follows that [[S, Sx]∗, Sy]∗ ∈ g−1
∗ ∗ k∗g. Since S commutes with all elements of g−1

∗ ∗ k∗g,
we have [S, [[S, Sx]∗, Sy]∗]∗ = 0. Hence

Wx = [Sx, Sy]∗ + [[S, Sx]∗,W ]∗. (5.14)

Together with (5.8) this constitutes a (2 + 1)-dimensional matrix generalization of the
Heisenberg ferromagnet equation, as we shall explain below.

Example. ForN = 2 and n = 1 we have S2 = − 1
4 I andW = u ∗ S with a function u. Using

[[S, Sx]∗, u ∗ S]∗ = [[S, Sx]∗, u]∗ ∗ S + u ∗ [[S, Sx]∗, S]∗ = [[S, Sx]∗, u]∗ ∗ S + u ∗ Sx
(5.15)

the system (5.8), (5.14) becomes

St = −([S, Sy]∗ − u ∗ S)x ux = −4 [Sx, Sy]∗ ∗ S + [[S, Sx]∗, u]∗. (5.16)

In the undeformed (commutative) case, the term [[S, Sx]∗, u]∗ disappears. Then we recover a
system of equations which has been discussed in [7] (see also the references given there). Its
nonlinear Schrödinger-type counterpart has been considered in [8]. Our equations (5.8), (5.14)
thus constitute a matrix generalization of this system. Let us choose

g = exp

(
− i

2
σ2 ϕ

)
exp

(
i

2
σ3 t

)
=

(
eit/2 cos(ϕ/2) −e−it/2 sin(ϕ/2)
eit/2 sin(ϕ/2) e−it/2 cos(ϕ/2)

)

(5.17)

with a function ϕ(x, y) and the Pauli matrices σ2 and σ3, we obtain

S = i

2

(
cosϕ −e−it sin ϕ

−eit sin ϕ − cosϕ

)
. (5.18)

Then [Sx, Sy] = 0 and we can chooseW = 0. Now (5.8) reduces to the sine–Gordon equation

ϕxy = sin ϕ. (5.19)

For y = x, (5.2) and the decomposition (5.7) imply W = 0. Without deformation, (5.8)
then reduces to St = −[S, Sxx], which is a matrix generalization [2] (see also [13])
of an equation which describes a one-dimensional continuous spin system (Heisenberg
ferromagnet) [14]. Its equivalence with the nonlinear Schrödinger equation was demonstrated
in [15] (see also [16]).
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With S = −γx , (5.8) becomes8

γt = [γx, γxy]∗ −W. (5.20)

Fory = xwe haveW = 0. Without deformation, the last equation is then a generalization [2] of
the Da Rios equation, which describes evolution of a thin vortex filament in a three-dimensional
fluid [17] (see also [18, 19], in particular). Its equivalence with the NLS equation was first
shown in [20].

6. Conclusions

Using bicomplex formalism [1], we obtained an extension of the Fordy–Kulish systems of
matrix-NLS equations to three space-time dimensions. Moreover, corresponding equations on
a noncommutative space-time are obtained by deformation quantization. We have shown that
the resulting equations still possess an infinite set of conserved densities. Moreover, there is a
gauge-equivalent generalized ferromagnet equation for all of these systems.

The Fordy–Kulish systems generalize the nonlinear Schrödinger equation, respectively
the Heisenberg magnet or the Da Rios equation. The latter equations are associated with the
simplest Hermitian symmetric space SU(2)/S(U(1)×U(1)) in the series SU(N)/S(U(n)×
U(N − n)). The corresponding extended Fordy–Kulish system associated with this space
reproduces the (2+1)-dimensional Myrzakulov system [7] and also the sine–Gordon equation,
as shown in the previous section. There may be a way to understand the extended Fordy–
Kulish systems as generalizations of the sine–Gordon equation in a similar way as they are
quite obvious generalizations of the NLS equation. The extended Fordy–Kulish systems are
matrix generalizations of the Myrzakulov system, of course.

In the case of matrix equations, the symmetric space structure of the Fordy–Kulish systems
is just one way to sufficiently reduce the number of independent equations which result from
the bicomplex conditions. There are different ways to avoid an overdetermined system. In [1]
some other multi-dimensional systems of PDEs possessing a bicomplex formulation were
presented.

Certain limits of string, D-brane and M theory generate field theories on noncommutative
space-times which are obtained by a space-time deformation quantization (see [21] and the
references given there). Among the various noncommutative models which arise in these
and other ways, ‘integrable’ models will certainly be of special interest because of their highly
distinguished properties. Although a suitable notion of integrability of a noncommutative field
theory is not yet at hand, we think that the existence of an infinite set of conserved densities
should be taken as a partial requirement. In the case of the deformations considered in this
paper (see also [11,12]), this requirement is satisfied. However, techniques to construct explicit
solutions of the kinds of equation considered in this paper are still needed.

The relation between bi-Hamiltonian systems and bicomplexes has been clarified
in [22]. The bicomplex structure is much more general, however, and neither presupposes
a Hamiltonian structure nor implies one, as far as we can see. However, if a classical system
admits a bi-Hamiltonian structure, it should be of interest to investigate its fate under a Moyal
deformation which preserves the existence of an infinite set of conservation laws. We leave
this for future work.

8 An arbitrary matrix V which does not depend on x arises as a ‘constant of integration’. It can be eliminated by a
redefinition of γ .
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